Rates of Asymptotic Regularity for Halpern Iterations of Nonexpansive Mappings

نویسنده

  • Laurentiu Leustean
چکیده

In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings using methods from mathematical logic or, more specifically, proof-theoretic techniques. We give effective rates of asymptotic regularity for the Halpern iterations of nonexpansive self-mappings of nonempty convex sets in normed spaces. The paper presents another case study in the project of proof mining, which is concerned with the extraction of effective uniform bounds from (prima-facie) ineffective proofs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonexpansive Iterations in Uniformly Convex W -hyperbolic Spaces

We propose the class of uniformly convex W -hyperbolic spaces with monotone modulus of uniform convexity (UCW -hyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCW -hyperbolic spaces are a natural generalization both of uniformly convex normed spaces and CAT (0)-spaces. Furthermore, we apply proof mining techniques to get effective rates of asympt...

متن کامل

Quantitative asymptotic regularity results for the composition of two mappings

In this paper, we use techniques which originate from proof mining to give rates of asymptotic regularity and metastability for a sequence associated to the composition of two firmly nonexpansive mappings.

متن کامل

Mann iterates of directionally nonexpansive mappings in hyperbolic spaces

In a previous paper, the first author derived an explicit quantitative version of a theorem due to Borwein, Reich and Shafrir on the asymptotic behaviour of Mann iterations of nonexpansive mappings of convex sets C in normed linear spaces. This quantitative version, which was obtained by a logical analysis of the ineffective proof given by Borwein, Reich and Shafrir, could be used to obtain str...

متن کامل

Halpern Type Iterations for Strongly Quasi-nonexpansive Sequences and Its Applications

In this paper, we study the strong convergence of the Halpern type algorithms for a strongly quasi-nonexpansive sequence of operators. These results extend the results of Saejung [11]. Some applications in infinite family of firmly quasi-nonexpansive mappings, multiparameter proximal point algorithm, constraint minimization and subgradient projection are presented.

متن کامل

Strong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces

In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings.  Then, we give  applications of our main results in equilibrium problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007